圆的标准方程说课稿
作为一名教学工作者,时常需要编写说课稿,通过说课稿可以很好地改正讲课缺点。如何把说课稿做到重点突出呢?以下是小编为大家收集的圆的标准方程说课稿,希望对大家有所帮助。
圆的标准方程说课稿1(一)说教材
1、教材结构编排:
本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。
2、教学目标
知识目标:
(1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、
(2)已知圆心和半径会写出圆的标准方程、
能力目标:
(1)培养学生数形结合能力、
(2)培养学生应用数学知识解决实际问题的能力
情感目标:
(1)培养学生主动探究知识,合作交流的意识。
(2)在体验数学美的过程中激发学生学习的兴趣。
3、教学重点
(1)圆的标准方程
(2)已知圆的标准方程会写出圆的圆心和半径
(3)已知圆心坐标和半径会写出圆的标准方程
4、教学难点
(1)圆的标准方程的推导
(2)圆的标准方程的应用
(二)说教法
本节课采用讲练结合,启发式教学
(三)说学法
1、 主动探究学习
2、 小组合作学习
(四)说教学过程
1、导入
通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。
2、知识衔接
(1)圆的定义,圆上的点具备的特征性质
(2)平面上两点间的距离公式
通过复习为后边推导圆的标准方程奠定基础,降低难度。
3、新课学习
(1)推导圆的标准方程(化解难点)
怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。
(2)圆的标准方程(突出重点)
先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径
(3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。
(4)小结本节的重点知识
(5)根据所学为了加强巩固,适当的布置作业
(五)说板书设计
正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。
圆的标准方程说课稿2一、教学背景分析
1、教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2、学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3、教学目标
(1) 知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题。
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识。
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4、教学重点与难点
(1)重点:圆的标准方程的求法及其应用。
(2)难点: ①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
二、教法学法分析
1、教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
2、学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。
下面我就对具体的教学过程和设计加以说明:
三、教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高
反馈训练 形成方法 小结反思 拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图。
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入 ……此处隐藏8258个字……开展训练,并纠正学习中所遇到的问题
巩固所学知识,并查缺补漏。
回顾小结
(1分钟)
1.你学到了哪些知识?
2.你掌握了哪些技能?
3.你体会到了哪些数学思想?
采用提问的形式帮助学生回顾和分析本节所学。
学生思考并从知识、技能和思想方法上回顾总结。
培养学生归纳总结能力
作业布置
(1分钟)
课本87页习题2-2
A组的第1道题
布置训练任务
标记并完成相应的任务
检测学生掌握知识情况。
教学反思
本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。
教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。
圆的标准方程说课稿6一、教材分析
1、教材的地位与作用
《圆的标准方程》是在学习《直线与方程》等知识的基础上对解析几何进一步深入认识,提高学生运用方程思想、等价转化思想、数形结合的思想研究解析几何的能力,为后来进一步学习圆锥曲线奠定基础。
2、学习重点、难点
学习重点:
圆的标准方程的求法及其应用。
学习难点:
如何运用坐标法研究圆的问题。
二、教学目标:
1、知识目标:
让学生理解圆的标准方程的推导,并能正确使用标准方程解决简单问题。
2、能力目标:
①进一步培养学生用坐标法研究几何问题的能力;
②使学生加深对数形结合思想和待定系数法的理解;
③通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。
3、情感目标:
①培养学生勇于探究问题的能力, 学会在错误中反思并获得学习自信;
②增强学生学习的积极性,提高学习的乐趣。
三、教法、学法分析
1、学情分析
学习基础:学生在初中时对圆有了初步的认识,学生通过必修二的第三章“直线的方程”的学习,对解析法有了初步认识,但是对于解析几何的解题方法,学生接触不多;
学习障碍:对同一问题的不同分析方法形成思维的多样性较弱。
2、教法
学生为主体的探究性学习模式 。
四、教学过程
(一)创设情境(引入课题)
画一画:分别由两个学生在黑板上各画一个圆。
问题1:初中几何中圆的定义是什么?确定圆的要素有几个?
问题2:我们如何用坐标法来研究圆呢?(小组交流,学生代表到台前讲述)
(二)深入探究(探究圆的方程,获得新知)
方法一:坐标法:由两点间的距离公式,
方法二:图形变换法;
方法三:向量平移法
(三)应用举例(巩固提高)
I.直接应用(内化新知)
例1.写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(设计意图:几何法角度分析点与圆的位置关系:讨论圆心离原点的距离d与半径r的大小;
坐标法角度分析点与圆的位置关系:讨论将点的坐标代人方程的式子与II.灵活应用(提升能力)
例2.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线上,求圆心为C的圆的标准方程。
设计意图:这是课本中的例3,书中用几何法直接求得圆心C的坐标和半径大小,从而得出圆的方程。我们还可以让学生用坐标法(待定系数法)求圆的方程,在寻求待定系数法的等式时又有多种思考途径:圆的几何意义(半径相等或对称性);向量的运用(数量积相等或垂直向量内积为零)。
当学生的解法出现得较多时,引导学生归类:几何法与待定系数法。
解法归类后提出要求:书中例2你还有几种解法,课后小组内进行交流。
(四)反馈训练(形成方法)
练习:课本P120第4小题:已知△AOB的顶点坐标分别是A(4,0),B(0,3),O(0,0),求△AOB外接圆的方程。
练习的1,2,3小题课后独立完成,小组交流。
设计意图:由初中所学的不共线的三点唯一确定圆升华到可以唯一求得圆的标准方程,进一步巩固旧知并明确要求得圆的标准方程需要三个条件。
(五)小结反思(拓展引申)
1.课堂小结:
(1)圆心为C(a,b),半径为r 的圆的标准方程为:
当圆心在原点时,圆的标准方程为:
(2) 求圆的方程的方法:①待定系数法(坐标法);②几何法
2.分层作业:
(A)巩固型作业:课本P120练习1,2,3(独立完成后组内交流);
课本习题4.1A组2,3.B组1,2.(独立完成后教师阅
(B)思维拓展:
1.用平面几何知识证明:三角形三边中垂线交于一点.
2.已知圆的方程是,求经过圆上一点的切线的方程.
(C)预习:课本4.1.2圆的一般方程.
五、评价分析
设计理念:
1.数学课堂是学生学习数学知识、运用数学方法、体会数学思想的过程,教师的责任在于激发学生的主体意识,召唤学生的学习热情。
2.高效的数学课堂实际上是学生高效学习的一个历程,教师要善于帮助学习寻求适合的、高效的学习方法。
3.数学学习是一个思维碰撞的过程,教师设计出适合学生的情感体验节点,努力让学生心动而神动,营造出师生心灵共振的景象。
设计思路:
圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用坐标法研究圆的标准方程及其简单应用。首先,在已有圆的定义和求轨迹方程的一般步骤的基础上,引导学生探究获得圆的方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程确定的多样性激活学生思维、激发探究兴趣、领悟数学的灵动性。另外,为了培养学生的理性思维,我分别在探究圆的标准方程时和例1中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.
本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、把探究活动层层展开、步步深入,充分体现以以学生为主体的指导思想。学生学习知识的过程是学生操作、观察、发现、分析、解决问题的过程,在解决问题的同时锻炼思维.提高能力、培养兴趣、增强信心。
文档为doc格式